Mix Design Procedure for Lightweight Aggregate SCC (LWASCC) Based on the Wet Packing Method

Michael I. Kaffetzakis mkaffetzakis@upatras.gr
Civil Engineer, M.Sc., Ph.D. candidate, Structural Materials Lab, Civil Engineering Department, University of Patras, Greece

Catherine (Corina) G. Papanicolaou kpapanic@upatras.gr
Assistant Professor, Structural Materials Lab, Civil Engineering Department, University of Patras, Greece
OUTLINE

INTRODUCTION

Lightweight Aggregate Self-Compacting Concrete (commonly termed as Self-Compacting Lightweight Concrete SCLC)

Experimental Program

Materials
Previous work done by the authors
Mix design methodology based on the optimum packing point concept

Ongoing work

Fiber-reinforced pumice aggregate self-compacting concrete

Future work
OUTLINE

INTRODUCTION

Lightweight Aggregate Self-Compacting Concrete (commonly termed as Self-Compacting Lightweight Concrete SCLC)

Experimental Program

Materials
Previous work done by the authors
Mix design methodology based on the optimum packing point concept

Ongoing work

Fiber-reinforced pumice aggregate self-compacting concrete

Future work
LIGHTWEIGHT AGGREGATE SELF-COMPACTING CONCRETE (LWASCC)

A high performance material that combines the advantages of structural lightweight aggregate concrete (LWAC), such as:

- Reduced dead loads and formwork pressure
- High insulation capacity
- Improved durability
- Resistance against fire & chemical attack
- Self-compacting characteristics
Lightweight aggregate self-compacting concrete (LWASCC)

Arising challenges revolve around: mix design (more complex than for normal weight SCC), production procedure (handling of LWAs), cost minimization, market awareness (lack of widespread usage).
LIGHTWEIGHT AGGREGATE SELF-COMPACTING CONCRETE (LWASCC)

MAIN CONSIDERATIONS...

- Low weight (= low dynamic energy @ flow) → poor self-compactness
 - Are the terms ‘lightweight concrete’ & ‘self-compactness’ contradictory?
 - If not, do LWASCC fresh-state assessment scores fall into the typical range for normal weight SCC?
- Unfavorable difference in density between phases
 - How can the aggregates’ tendency for buoyancy be treated?
- High aggregates’ absorption capacity
- Mechanical properties
- Durability issues
LWASCC APPLICATIONS

Mainly in the precast industry

OUTLINE

INTRODUCTION

Lightweight Aggregate Self-Compacting Concrete (commonly termed as Self-Compacting Lightweight Concrete SCLC)

Experimental Program

Materials
Previous work done by the authors
Mix design methodology based on the optimum packing point concept

Ongoing work

Fiber-reinforced pumice aggregate self-compacting concrete

Future work
LIGHTWEIGHT AGGREGATES: PUMICE

• Abundant reserves in Greece

• 2-3 times lighter than conventional (limestone) aggregates

 apparent density $\approx 600 \text{ kg/m}^3$

 particle density $\approx 1000 \text{ kg/m}^3$

• Low strength (crushing resistance $\approx 3.5 \text{ MPa}$)

• High Water Absorption (WA): 30-80% by weight
Pumice aggregate fractions

- **Sand**
 - 0-4 mm

- **Fine**
 - 4-8 mm

- **Coarse**
 - 8-16 mm

![Sieve size distribution graph](image)
Investigated methods for minimization of aggregates’ water absorption capacity

- **pre-wetting**
- **soaking**
 - sprinkling
 - immersion in water
 - coating after soaking
Investigated methods for minimization of aggregates’ water absorption capacity

<table>
<thead>
<tr>
<th>Water Absorption [%]</th>
<th>Saturation time [days]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse with stirring</td>
<td>+ 10 ~ 15%</td>
</tr>
<tr>
<td>Coarse without stirring</td>
<td></td>
</tr>
<tr>
<td>Fine with stirring</td>
<td></td>
</tr>
<tr>
<td>Fine without stirring</td>
<td></td>
</tr>
</tbody>
</table>

Soaking immersion in water
PUMICE AGGREGATE SELF-COMPACTING CONCRETE (PASCC) DESIGNED MIXTURES

Proportioning: based on the Okamura & Ozawa method

Aim: Assessment of the effect of Coarse-to-Fine (C/F) aggregates ratio

C/F MIX SERIES

\[\rho_{\text{fresh}}: 1459 \sim 1523 \, \text{kg/m}^3 \]
\[\rho_{\text{dry}}: 1365 \sim 1430 \, \text{kg/m}^3 \]

<table>
<thead>
<tr>
<th></th>
<th>kg/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement II 42.5</td>
<td>400</td>
</tr>
<tr>
<td>Sand</td>
<td>410</td>
</tr>
<tr>
<td>VMA</td>
<td>0.6</td>
</tr>
<tr>
<td>SP</td>
<td>5.0</td>
</tr>
<tr>
<td>Stabilizer</td>
<td>1.5</td>
</tr>
<tr>
<td>Efficient water</td>
<td>142</td>
</tr>
<tr>
<td>Coarse+Fine</td>
<td>380</td>
</tr>
</tbody>
</table>
C/F SERIES

Aggregate voids volume

- voids content: volumetric content of voids \([v]\) contained in an aggregate mixture
 \[v = \frac{(\rho_p - \rho_b)}{\rho_p} \times 100\]

- the least voids volume is related to the least attainable aggregate volume & it specifies the highest amount of excess paste in benefit of rheology

- the optimum C/F pumice aggregates ratio (70/30) from the workability tests was found to be in compliance with the C/F ratio corresponding to the least voids volume

\(\rho_p\): Particle density

\(\rho_b\): Bulk density
Specific strength by [14] ≈ 85% of mean specific strength (all LWASCC studies included)

Mean specific strength ≈ C35/45 NWC specific strength

1 out of 3 studies with natural LWAs
Optimum Packing Concept

- LWASCC mix proportioning method proposal
 (Optimum Packing Point – OPP concept)
 ✓ three separately investigated phases: paste, mortar & concrete
 ✓ use of the “wet packing method” for paste & mortar phases
 (+ standard consistency tests)
 ✓ evaluation of aggregate voids volume (as per EN 1097-3 & EN 1097-8)
 ✓ Definition of the optimum concrete phase proportions by adjusting
 the K factor ($K = V_{\text{mortar}} / V_{\text{aggregates’ voids}}$)
“wet packing method” for paste & mortar phases

1. The weight (w) of a cement paste (or mortar) of given water-to-cementitious materials volumetric ratio ($u_w = V_w / V_{cm}$) is measured; the container of the paste (or mortar) is of known volume (V_{total}).

Optimized mixing procedure for pastes

(Wong & Kwan, 2008):

1. first, the entire water quantity is mixed with 1/2 of the cementitious materials + 1/2 of the SP for 3 minutes;

2. then, the rest of the cementitious materials and the SP are divided into four portions and each portion is added after an extra 3 minutes of mixing (total mixing time 15 minutes).
✓ “wet packing method” for paste & mortar phases

1. The weight \(w \) of a cement paste (or mortar) of given water-to-cementitious materials volumetric ratio \(u_w = V_w / V_{cm} \) is measured; the container of the paste (or mortar) is of known volume \(V_{total} \).

Optimized mixing procedure for mortars:

1. first, the entire water quantity is mixed with the pumice sand (for 1 min), then 1/2 of the cementitious materials + 1/2 of the SP are added and mixing continues for 3 minutes;

2. then, the rest of the cementitious materials and the SP are divided into four portions and each portion is added after an extra 3 minutes of mixing (total mixing time 16 minutes).
“wet packing method” for paste & mortar phases

2. Then, the contents of the total voids \(u \) and air voids \(u_\alpha \) (expressed as the voids-to-solid materials volumetric ratios) and the solid concentration \(\phi \), are calculated according to the following equations:

\[
V_{\text{solids}} = \frac{w}{\left[\rho_w u_w + R_\alpha (3.1 + \rho_\beta R_\beta + \rho_\gamma R_\gamma + \rho_\delta R_\delta + \rho_{SP} R_{\text{Solids}_{-SP}} R_{SP}) \right]}
\]

where:
- \(R_\alpha \): Cement content as % of solids content, by vol.
- \(R_\beta, R_\gamma, R_\delta, R_{SP} \): Cementitious materials (\(\beta, \gamma \& \delta \)) & SP content as % of cement content, by vol.
- \(R_{\text{Solids}_{-SP}} \): Solids of SP as % of SP content, by vol.
- \(\rho_i \): Particle densities of each material

Total voids stand for the sum of air and water voids.

\[
u = \frac{(V_{\text{total}} - V_{\text{solids}})}{V_{\text{solids}}}
\]

\[
u_\alpha = \frac{(V_{\text{total}} - V_{\text{solids}} - V_w)}{V_{\text{solids}}}
\]

\[
\phi = \frac{V_{\text{solids}}}{V_{\text{total}}}
\]
✓ “wet packing method” for paste & mortar phases

Solid materials for pastes include: cementitious materials; sand powder (with max aggregate size < 125 μm); and admixtures’ solid contents.

In mortars solid materials also include: aggregates (with max aggregate size < 4 mm - mainly sand).

The procedure (in the paste phase) starts by selecting a rather high value of \(V_w / V_{cm} \) (e.g. 0.8), which is gradually reduced in a series of trial pastes until the measured solid concentration \(\varphi \) starts to decrease (or, equivalently, total voids \(u \) start to increase).

Further decrease of the \(w/cm \) ratio yields pastes that fail to form.
✓ “wet packing method” for paste & mortar phases
The investigation aimed at determining: (i) the proportions of powder materials in the paste; and (ii) the sand content, the SP dosage and the \(w/cm \) ratio in the mortar that yield the optimum packing in both phases.
✓ “wet packing method” for paste & mortar phases (+ standard consistency tests)

The optimum packing concept employed in this work is not associated to the maximum attainable solid concentration of the mixture (ϕ_{max});

It corresponds to the highest possible solid concentration that satisfies specific criteria associated to self-compactness (ϕ_{opt}).

![Graph showing voids ratio vs. V_w / V_{cm}]
✓ “wet packing method” for paste & mortar phases (+ standard consistency tests)

Pastes
Desired Slump-Flow: 240 – 260 mm

Mortars
Desired Slump-Flow: 320 – 360 mm
Desired Flow Time: minimum possible

Slump-Flow (paste/mortar)
mini V-funnel (mortar)
Paste mixes investigated (144 individual tests):

Single-additive (trial) mixture series

- Cement (CEM II 42.5 N)
- Limestone Filler LF$_{120}$ ($d_{\text{max}} = 120 \mu m$)
- Limestone Filler LF$_{10}$ ($d_{\text{max}} = 10 \mu m$)
- Silica Fume SF ($d_{\text{max}} = 1 \mu m$)

Notation:
- Control mixture: CEM
- Additive$_X\%$ (X: volumetric addition as cement replacement ≥12.5%, 25% & 50%)

 [SP content: 1.5% (by cement weight)]
Paste phase: single-additive (trial) mixture series
Paste mixes investigated (144 individual tests):

Multi-additive mixture series

Cement (CEM II 42.5 N) + Limestone Filler LF120 (d_{max} = 120 \mu m) + Pumice powder (d_{max} < 125 \mu m) + Silica Fume SF (d_{max} = 1 \mu m)

Notation:
- Control mixture: LF120
- LF120 _Third Additive_X% (X: % of cement by weight *5%, 8%, 10% & 15%)
 [SP content: 1.5% (by cement weight)]
 [total additive percentage was kept constant at 40% of cement volume]
Paste phase: multi-additive mixture series
Paste phase: multi-additive mixture series

Best multi-additive paste mixtures

- Water voids
- $LF_{120-LF_{15}}$
- $LF_{120-SF_{10}}$
- $LF_{10-SF_{8}}$

Properties:
- $f_{c_{28d}}$: 86.5 MPa
- $f_{f_{l28d}}$: 7.2 MPa
- $f_{c_{28d}}$: 93.5 MPa
- $f_{f_{l28d}}$: 10.4 MPa
Mortar phase:

- Two pastes for mortar mixes were used:
 - M1 comprising “LF\textsubscript{120-10-15}” paste
 - M2 comprising “LF\textsubscript{10-SF-8}” paste

\[\text{M1 or M2} + \text{Pumice sand (0 – 4 mm)}\]

- 40\% by CEM vol.
- 45\% by CEM vol.
- 50\% by CEM vol.
- SP: 1.5\% by CEM weight
- SP: 1.8\% by CEM weight
- SP: 2.1\% by CEM weight

18 mortar mix combinations (101 ‘wet packing method’ tests)
Mortar phase:

- **M1** comprises “LF$_{120}$-LF$_{10}$-15%” paste
- **M2** comprises “LF$_{10}$-SF-8%” paste
Mortar phase:

- M1 comprises “LF_{120-LF_{10}}_{15}” paste
- M2 comprises “LF_{10-SF_{8}}” paste
Experimental Program - Optimum packing point concept

Prism cross-sections and flow spreads of different mortar mixtures

<table>
<thead>
<tr>
<th>Mortar Mixture</th>
<th>Compressive Strength ($f_{c_{28d}}$)</th>
<th>Flexural Strength ($f_{f_{l_{28d}}}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1_PS40%_SP2.1%</td>
<td>67.7 MPa</td>
<td>7.6 MPa</td>
</tr>
<tr>
<td>M1_NS40%_SP2.1%</td>
<td>94.0 MPa</td>
<td>11.2 MPa</td>
</tr>
<tr>
<td>M2_PS40%_SP2.1%</td>
<td>77.9 MPa</td>
<td>8.6 MPa</td>
</tr>
<tr>
<td>M2_NS40%_SP2.1%</td>
<td>101.4 MPa</td>
<td>11.4 MPa</td>
</tr>
</tbody>
</table>

- **M1** comprises “LF$_{120}$_LF$_{10}$_15%” paste
- **M2** comprises “LF$_{10}$_SF_8%” paste
Concrete phase

So far:

✓ fines content (% by cement weight) ⇒ optimum paste
✓ sand content (% by cement weight)
✓ SP dosage (% by cement weight) ⇒ optimum mortar
✓ water content (% by cement weight)
✓ aggregates fractions’ ratio C/F that yields the least aggregates’ voids volume

Now:

K factor adjustment starting at \(K = 1.2 \)
Concrete phase [**LF mixes** (comprising optimum mortar M1)]

L-box

- Slump flow diameter classes:
 - Class SF1: 550 – 650 mm
 - Class SF2: 660 – 750 mm
 - Class SF3: 760 – 850 mm

- Passing ability classes – L-box:
 - PL1: ≥ 0.80 with 2 rebars
 - PL2: ≥ 0.80 with 3 rebars

V-funnel

- Viscosity classes V-funnel:
 - Class VF1: < 9
 - Class VF2: 9 - 25

Graphs:
- L-box passing ratio $[H_2/H_1]$ vs. Time [min]
- V-funnel [sec] vs. Time [min]
Concrete phase [**SF mixes** (comprising optimum mortar M2)]

L-box passing ratio \([H_2/H_1] \)

- **K = 1.55**
- **K = 1.4**
- **K = 1.35**

<table>
<thead>
<tr>
<th>Time [min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1.2</td>
</tr>
</tbody>
</table>

V-funnel

- **K = 1.55**
- **K = 1.4**
- **K = 1.35**

<table>
<thead>
<tr>
<th>Time [min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>35</td>
</tr>
</tbody>
</table>

Slump flow diameter classes.

<table>
<thead>
<tr>
<th>Class</th>
<th>Flow diameter in mm (Limit values for individual batches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SF1</td>
<td>550 - 650</td>
</tr>
<tr>
<td>SF2</td>
<td>660 - 750</td>
</tr>
<tr>
<td>SF3</td>
<td>760 - 850</td>
</tr>
</tbody>
</table>

Passing ability classes – L-box.

<table>
<thead>
<tr>
<th>Class</th>
<th>L-Box ratio (-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL1</td>
<td>(\geq 0.80) with 2 rebars</td>
</tr>
<tr>
<td>PL2</td>
<td>(\geq 0.80) with 3 rebars</td>
</tr>
</tbody>
</table>

Viscosity classes V-funnel.

<table>
<thead>
<tr>
<th>Class</th>
<th>V-funnel time (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VF1</td>
<td>(< 9)</td>
</tr>
<tr>
<td>VF2</td>
<td>9 - 25</td>
</tr>
</tbody>
</table>

no retention
Using Optimum Packing Point – OPP concept

- **without** OPP procedure
 - 400 kg/m³ cement
 - 30 kg/m³ limestone filler
 - 0.43 w/cm
 - ½ hour workability retention
 - LC 20/22 D 1.4

- **with** OPP procedure
 - 430 kg/m³ cement
 - 150 kg/m³ limestone filler
 - 0.32 w/cm
 - 1½ hour workability retention
 - LC 30/33 D 1.6
Using Optimum Packing Point – OPP concept

- **without OPP procedure**
 - 330 kg/m³ cement
 - 30 kg/m³ limestone filler
 - 60 kg/m³ silica fume
 - 0.41 w/cm
 - ½ hour workability retention
 - LC 20/22 D 1.4

- **with OPP procedure**
 - 380 kg/m³ cement
 - 90 kg/m³ limestone filler
 - 30 kg/m³ silica fume
 - 0.3 w/cm
 - 1 hour workability retention
 - LC 30/33 D 1.6
OUTLINE

INTRODUCTION

Lightweight Aggregate Self-Compacting Concrete (commonly termed as Self-Compacting Lightweight Concrete SCLC)

Experimental Program

Materials

Previous work done by the authors

Mix design methodology based on the optimum packing point concept

Ongoing work

Fiber-reinforced pumice aggregate self-compacting concrete

Future work
2009-2010 RESEARCH

- **polypropylene fibers 25 mm**

- **polypropylene fibers 50 mm**

Fiber content: 0.5% by vol.
2009-2010 RESEARCH

▸ steel fibers 30 mm

▸ steel fibers 60 mm

Fiber content: 0.5% by vol.
Ongoing work – Fiber-reinforced PASCC

2009-2010 RESEARCH

- steel fibers 30 mm & NW sand
 - 1 hour retention

- steel fibers 30 mm, NW sand & silica fume addition
 - Fiber content: 0.5% by vol.
OUTLINE

INTRODUCTION

Lightweight Aggregate Self-Compacting Concrete (commonly termed as Self-Compacting Lightweight Concrete SCLC)

Experimental Program

Materials

Previous work done by the authors

Mix design methodology based on the optimum packing point concept

Ongoing work

Fiber-reinforced pumice aggregate self-compacting concrete

Future work
2010-2011 RESEARCH

- Monotonic and cyclic pull-out tests on PASCC
- Shear & flexural tests on PASCC beams
- Textile Reinforced PASCC
ACKNOWLEDGEMENTS

- Mr. Spyros Livanis, Ms. Spiridoula Papapgeorgopoulou
- TITAN (Mr. Fotopoulos, Mr. Chalkidis, Mr. Kontogiannis & Mr. Gavos)
- BASF HELLAS A.B.E.E.
- SIKA HELLAS A.B.E.E.
- Material Science Lab, Department of Materials Science and Engineering, University of Ioannina, Greece
- Geotest (Mr. Zoidis)
Thank you for your attention!